Dr. Marques Sophie Office 519 Linear algebra

Spring Semester 2014 marques@cims.nyu.edu

Problem Set # 7

Due to next monday in class

Exercise 1:

1. (Dimension theorem) If W is a subspace of a K-vector space V, then

$$dim_K(W) + dim_K(W^\circ) = dim_K(V)$$

- 2. If $T: V \to W$ is a linear operator of K vector space, prove that $K(T^t) =$ the annihilator $(R(T))^\circ$ of range(T).
- 3. If $T: V \to V$ is linear and W a subspace of V. Prove that W is T-invariant if and only if W° is invariant under the adjoint operator T^{t}
- 4. If $T: V \to W$ is linear. Prove that $rank(T^t) = rank(T)$.
- 5. If $A \in M_{n \times n}(K)$. We define $L_A : K^n \to K^n$ via $L_A(v) = A \cdot v$, for $v \in K^n$. The rank of any linear operator T is the dimension of the range R(T). Prove that

 $rank(L_A) = rank(L_{A^t}) = colrank(A) = colrank(A^t) = rowrank(A) = colrank(A^t)$

(Recall that

$$colrank(A) = dim(K - Span\{columns \ col_i(A) \ in \ A\})$$

and

$$rowrank(A) = dim(K - Span\{rows \ col_i(A) \ in \ A\})).$$

Exercise 2:

1. Write

$$\sigma = \left(\begin{array}{rrrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 1 & 3 \end{array}\right)$$

as a product of disjoint commuting cycles.

- 2. Evaluate the net action of the following products of cycles
 - (a) (1,2)(1,3) in S_3 ;
 - (b) $(1,2,3)^2 (= (1,2,3)(1,2,3))$ in S_5 .

- 3. Determine the inverses σ^{-1} of the following elements in S_5
 - (a) Any 2-cycle (i_1, i_2) with $i_1 \neq i_2$;
 - (b) Any *k*-cycle $(i_1, ..., i_k)$.
- 4. Evaluate the products in S_n as products of disjoint cycles
 - (a) (1,5)(1,4)(1,3)(1,2);
 - (b) (1,k)(1,2,...,k-1).

Exercise 3:

- 1. Prove that $(i_1, ..., i_k) = (i_1, i_k)(i_1, i_{k-1})...(i_1, i_2)$ and deduce that any permutation can be written as product of 2-cycles using a theorem mentioned in class; (Note that this decomposition is far from being unique.)
- 2. Consider the polynomial in *n*-unknowns $\phi \in K[x_1, ..., x_n]$ given by $\phi(x_1, ..., x_n) = \prod_{i < j} (x_i x_j)$. The group S_n acts on $K[x_1, ..., x_n]$ via permutation of the variables

$$\sigma \cdot f(x_1, ..., x_n) = f(x_{\sigma(1)}, ..., x_{\sigma(n)})$$

- (a) Check that this is a "covariant group action" in the sense that $(\sigma \tau) \cdot f = \sigma \cdot (\tau \cdot f)$ for all $\sigma, \tau \in S_n$ and $e \cdot f = f$ for the identity element e and all $f \in K[x_1, ..., x_n]$.
- (b) Prove that $\sigma \cdot \phi = (-1) \cdot \phi$ for any 2-cycle $\sigma = (i, j)$.
- (c) Deduce that $\sigma \cdot \phi = (-1)^r \phi$ if σ is a product $\tau_1, ..., \tau_r$ of r two-cycles.
- (d) Let $\sigma \in S_n$ and $\sigma = \tau_1, ..., \tau_r$ and $\sigma = \tau'_1, ..., \tau'_s$ two different decomposition in 2-cycles. Deduce for the previous question that $(-1)^r = (-1)^s$.

We denote this number is $sgn(\sigma) = (-1)^r$ which is the "parity" of a permutation where r is the number of 2-cycles in the factorization $\sigma = \tau_1...\tau_r$ (NB: we have just proved that it does not depend on the decomposition in 2-cycle, so the definition makes sense).

(e) Prove that sgn(e) = 1, $sgn(\sigma\tau) = sgn(\sigma)sgn(\tau)$, and $sgn(\sigma^{-1}) = sgn(\sigma)$, for any $\sigma, \tau \in S_n$.